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SUMMARY

Many-body dynamics problems are expected to handle millions of unknowns when, for instance,
investigating the three-dimensional flow of granular material. Unfortunately, the size of the problems
tractable by existing numerical solution techniques is severely limited on convergence grounds. This is
typically the case when the equations of motion embed a differential variational inequality (DVI) problem
that captures contact and possibly frictional interactions between rigid and/or flexible bodies. As the
size of the physical system increases, the speed and/or the quality of the numerical solution decrease.
This paper describes three methods - the gradient projected minimum residual (GPMINRES) method, the
preconditioned spectral projected gradient with fallback (P-SPG-FB) method, and the Kuc̆era method - that
demonstrate better scalability than the projected Jacobi and Gauss-Seidel methods commonly used to solve
contact problems that draw on a DVI-based modeling approach. Copyright c© 2012 John Wiley & Sons, Ltd.
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1. INTRODUCTION

The ability to efficiently and accurately simulate the dynamics of rigid multibody systems is
relevant in computer-aided engineering design, virtual reality, video games, and computer graphics.
Devices composed of rigid bodies interacting through frictional contacts and mechanical joints pose
numerical solution challenges because of the discontinuous nature of their motion [1]. Consequently,
the simulation of even relatively small systems composed of a few hundred parts and constraints may
require significant computational effort. More complex scenarios such as soil and rock dynamics,
vehicles operating on pebbles and sand, and flow and packing of granular materials are particularly
challenging and prone to long simulation times. A representative simulation problem is shown in
Fig. 1(a), which illustrates a light autonomous tracked vehicle that negotiates a pile of rubble in
which the material feature length is comparable with the dimensions of the vehicle. While mapping
the differential variational inequality (DVI)-based numerical solution onto a parallel architecture for
a problem such as in Fig. 1(a) reduces the simulation time, doing so does not address the underlying
problem of slow solution convergence [2]. Existing commercial software solutions may also struggle
with scalability issues. Results reported in [3] indicate that the most popular rigid body software for
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engineering simulation, which uses an alternative approach based on the so-called discrete element
method [4], runs into significant difficulties even when handling problems involving fewer than a
thousand of contact events.

(a) Light autonomous vehicle negotiating a pile of rubble. (b) Cutaway view: Anchor penetrat-
ing granular material [5].

Figure 1. Two examples in which hundreds of thousands of bodies interact mutually through contact and
friction. Simulation results for systems with up to 1.1 million bodies are reported in [6]. Experimental

validation results are reported in [5].

Unlike the so-called penalty or regularization methods, where the frictional interaction can be
represented by a collection of stiff springs combined with damping elements that act at the interface
of the two bodies [7], the approach embraced here draws on time-stepping procedures producing
weak solutions of the DVI problem that characterizes the time evolution of rigid bodies with impact,
contact, friction, and bilateral constraints. Early numerical methods based on DVI formulations can
be traced back to the early 1980s and 1990s [8, 9, 10]. Recent approaches based on time-stepping
schemes have included both acceleration-force linear complementarity problem (LCP) approaches
[11, 12] and velocity-impulse LCP-based time-stepping methods [13, 14, 15]. The LCPs, obtained
as a result of the introduction of inequalities accounting for nonpenetration conditions in time-
stepping schemes coupled with a polyhedral approximation of the friction cone, must be solved
at each time step in order to determine the system state configuration as well as the Lagrange
multipliers associated with the reaction forces [9, 13]. If the simulation entails a large number of
contacts and rigid bodies, as is the case in Fig. 1(a), the computational burden of classical LCP
solvers becomes prohibitive. Indeed, a well-known class of numerical methods for LCPs based on
simplex methods, also known as direct or pivoting methods [16], may exhibit exponential worst-
case complexity [17]. Moreover, the three-dimensional Coulomb friction case leads to a nonlinear
complementarity problem (NCP). The use of a polyhedral approximation to transform the NCP
into an LCP introduces unwanted anisotropy and significantly augments the size of the numerical
problem [13, 14].

The limitations imposed by the use of classical LCP solvers and the accuracy issues plaguing the
polyhedral approximation of the friction cone can be avoided by introducing a relaxation over the
complementarity constraints that transforms the original NCP into a cone complementarity problem
(CCP) [18]. The CCP is currently solved by using a fixed-point iteration method with projection on
a convex set [19]. Since the Jacobi and Gauss-Seidel approaches employed require a large number of
iterations when handling large systems of engineering relevance, the CCP solution, which currently
accounts for 90% of the total solution time, leads to prohibitively long simulations. The purpose of
this paper is to address this issue by comparing the Jacobi method with three new iterative methods
in order to identify a scalable method that demonstrates improved CCP convergence. Note that we
do not report results for Gauss-Seidel because they are qualitatively similar to those obtained with
the Jacobi method [20] and the method is not amenable to parallel computing.

The rest of the paper is organized as follows. The next section provides a brief description of
the DVI formulation and how it leads to the CCP of interest. Three new iterative approaches are
proposed for solving the CCP of multibody dynamics. Next, we analyze the performance of the
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KRYLOV SUBSPACE AND SPECTRAL METHODS FOR COMPLEMENTARITY PROBLEMS 3

proposed iterative methods using three benchmark numerical experiments. The paper concludes
with brief comments on the performance of the proposed methods and a discussion of future
directions of research.

2. SETTING UP THE CCP

The equations of motion are formulated hereby using a so-called absolute, or Cartesian,
representation of the attitude of each rigid body in the system. The state of the system is represented
by the generalized positions q =

[
rT1 , ε

T
1 , . . . , rTnb

, εTnb

]T ∈ R7nb and their time derivatives q̇ =[
ṙT1 , ε̇

T
1 , . . . , ṙ

T
nb
, ε̇Tnb

]T ∈ R7nb , where nb is the number of bodies, rj is the absolute position of
the center of mass of body j, and the quaternions (Euler parameters) εj are used to represent body
orientation. The set of quaternions is identified by ε ≡

[
εT1 , . . . , ε

T
nb

]T ∈ R4nb . Instead of using
quaternion derivatives ε̇, it is more advantageous to work with angular velocities ω̄Tj ∈ R3 expressed
in the local (body-attached) reference frames; in other words, the formulation described will use
the vector of generalized velocities v =

[
ṙT1 , ω̄

T
1 , . . . , ṙ

T
nb
, ω̄Tnb

]T ∈ R6nb . Note that the generalized
velocity can be easily obtained as q̇ = L(q)v, where L is a linear mapping that transforms
each ω̄i into the corresponding quaternion derivative ε̇i by means of the linear transformation
ε̇i = 1

2GT (εi)ω̄i, with the 3× 4 matrix G(εi) defined as in [21]. We denote by fA (t,q,v) the set of
applied, or external, generalized forces.

Bilateral constraints representing kinematic pairs (e.g., spherical, prismatic, or revolute joints)
lead to algebraic equations constraining the relative position of two rigid bodies. Specifically, the set
B of bilateral constraints present in the system leads to the scalar algebraic equations Ψi(q, t) = 0,
i ∈ B. Each constraint i ∈ B transmits reactions to the connected bodies by means of a multiplier
γ̂i,b. Assuming smoothness of the constraint manifold, Ψi(q, t) can be differentiated to obtain the
Jacobian ∇qΨi = [∂Ψi/∂q]

T . In what follows we will also use the notation ∇ΨT
i ≡ ∇qΨT

i · L(q).
Given a large number of rigid bodies with different shapes, modern collision-detection algorithms

are able to efficiently find a set of contact points, that is, points where a gap function, Φ(q), can be
defined for each pair of near-enough shape features. Where defined, such a gap function must satisfy
the nonpenetration condition Φ(q) ≥ 0 for all contact points.

When a contact i is active, that is, Φi(q) = 0, a normal force and a tangential friction force act
on each of the two bodies at the contact point. In what follows, A(q(t)) denotes the set of all active
contacts for a given configuration q of the system at time t.

We use the classical Coulomb friction model to define these forces [14]. If the contact is not active,
that is, Φi(q) > 0, no contact or friction forces exist. This situation implies that the mathematical
description of the model leads to a complementarity problem [13]. Consider two bodies A and B
in contact as shown in Fig. 2. Let ni be the normal at the contact pointing toward the exterior
of the body of lower index, which by convention is considered to be body A. Let ui and wi be
two vectors in the contact plane such that ni,ui,wi ∈ R3 are mutually orthonormal vectors. The
frictional contact force is impressed on the system by means of multipliers γ̂i,n ≥ 0, γ̂i,u, and γ̂i,w,
which lead to the normal component of the force Fi,N = γ̂i,nni and the tangential component of the
force Fi,T = γ̂i,uui + γ̂i,wwi. The Coulomb model is expressed by using the maximum dissipation
principle:

(γ̂i,u, γ̂i,w) = argmin√
γ̂2
i,u+γ̂2

i,w≤µiγ̂i,n

vTi,T (γ̂i,uui + γ̂i,wwi) . (1)

The time evolution of the dynamical system is governed by the following differential problem
with set-valued functions and complementarity constraints, which is equivalent to a differential
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Figure 2. Contact i between two bodies A,B ∈ {1, 2, . . . , nb}

variational inequality [22]:

q̇ = L(q)v

Mv̇ = f (t,q,v) +
∑

i∈A(q,δ)

(γ̂i,n Di,n + γ̂i,u Di,u + γ̂i,w Di,w) +
∑
i∈B

γ̂i,b∇Ψi

i ∈ B : Ψi(q, t) = 0

i ∈ A(q(t)) : 0 ≤ γ̂i,n ⊥ Φi(q) ≥ 0, and

(γ̂i,u, γ̂i,w) = argmin
µiγ̂i,n≥

√
(γ̂i,u)2+(γ̂i,w)2

vT (γ̂i,u Di,u + γ̂i,w Di,w)

(2)

The tangent space generators Di = [ Di,n, Di,u, Di,w] ∈ R6nb×3 are defined as

DT
i =

[
0 . . . −AT

i,p AT
i,pAA˜̄si,A 0 . . . 0 AT

i,p −AT
i,pAB˜̄si,B . . . 0

]
, (3)

where Ai,p = [ni,ui,wi] ∈ R3×3 is the orientation matrix associated with contact i and the vectors
s̄i,A and s̄i,B represent the contact point positions in body-relative coordinates as illustrated in Fig. 2.

The Coulomb model used in this work is the predominant model used in the engineering literature
to describe dry friction. Unfortunately, the model may be inconsistent: configurations exist for which
the resulting problem does not have a solution [11, 15]. This situation has led to the need to explore
weaker formulations where the forces are measures and Newton’s law is satisfied in a measure
differential inclusion sense [15]. It has been shown that solutions in that sense do exist and can be
found by time-stepping schemes [23].

Time-stepping scheme

The frictional contact dynamics problem formulated in terms of measure differential inclusions [15]
is solved here by employing a time-stepping scheme that requires at each time step the solution
of a complementarity problem. Specifically, given a position q(l) and velocity v(l) at time step
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KRYLOV SUBSPACE AND SPECTRAL METHODS FOR COMPLEMENTARITY PROBLEMS 5

t(l), the numerical solution is found at the new time step t(l+1) = t(l) + h by solving the following
optimization problem with equilibrium constraints [24]:

M(v(l+1) − v(l)) = hf(t(l),q(l),v(l)) +
∑

i∈A(q(l),δ)

(γi,n Di,n + γi,u Di,u + γi,w Di,w)

+
∑
i∈B

γi,b∇Ψi (4)

i ∈ B :
1

h
Ψi(q

(l)) +∇ΨT
i v(l+1) +

∂Ψi

∂t
= 0 (5)

i ∈ A(q(l), δ) : 0 ≤ 1

h
Φi(q

(l)) + DT
i,nv(l+1) ⊥ γin ≥ 0, and (6)

(γi,u, γi,w) = argmin
µiγi,n≥

√
γ2
i,u+γ2

i,w

vT (γi,u Di,u + γi,w Di,w) (7)

q(l+1) = q(l) + hL(q(l))v(l+1). (8)

Here, γs represents the constraint impulse of a contact constraint; that is, γs = hγ̂s, for s = n, u,w.
The superscript (l + 1) on γs was dropped for notational brevity. The 1

hΦi(q
(l)) term achieves

constraint stabilization; its effect is discussed in [25]. Similarly, the term 1
hΨi(q

(l)) achieves
stabilization for bilateral constraints. The set of active unilateral constraint is denoted by A(q(l), δ)
to reflect the fact that at t(l) this set includes active as well as potential contacts between bodies
that are less than a distance δ apart. The scheme converges to the solution of a measure differential
inclusion when the step size h→ 0 [18].

Several approaches can be used to solve (4)–(7) and subsequently update the position
configuration by using Eq. (8). Some authors suggested faceted pyramids to approximate friction
cones so that the system of equations above, originally a nonlinear complementarity problem (NCP),
turns into a linear complementarity problem (LCP) [14]. The resulting LCP can be solved by
using pivoting or simplex methods. These numerical approaches, which belong to the class of
direct methods, are computationally expensive and their complexity is in the worst case exponential
[26]. Alternatively, the problem can be cast as a monotone optimization problem by introducing a
relaxation over the complementarity constraints. Specifically, the time-stepping scheme is modified
by replacing Eq. (6) with

i ∈ A(q(l), δ) : 0 ≤ 1

h
Φi(q

(l)) + DT
i,nv(l+1) − µi

√
(vT Di,u)2 + (vT Di,w)2 ⊥ γin ≥ 0 . (9)

As h→ 0 the solution of the modified time-stepping scheme continues to approach the solution of
the same measure differential inclusion as did the original numerical scheme [18]. It has been shown
that the modified scheme is a CCP that can be solved by a family of iterative numerical methods
that rely on projected contractive maps [19].

3. SOLVING THE CCP

The discussion here will concentrate only on the treatment of unilateral constraints. This is
motivated by the observation that the number of unilateral constraints in real-life scenarios of
interest (e.g., dynamics of granular material, granular terrain) dwarfs by five to six orders of
magnitude the number of bilateral constraints. Moreover, the numerical solution challenges, from
collision detection issues to scalability and convergence attributes, stem from difficulties associated
with handling the unilateral constraints. Applications with tens of thousands of constraints for which
the number of unilateral and bilateral constraints are comparable are currently effectively solved
within the existing framework for DVI solution; see, for instance, [1, 25, 27, 2]. The numerical
methods proposed here are immediately applicable to scenarios with bilateral constraints following
the approach outlined, for instance, in [25]. Note that the no-bilateral-constraints assumption
translates into B = ∅, effectively eliminating Eq. (5) from the set of equations dealt with.

Copyright c© 2012 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Engng (2012)
Prepared using nmeauth.cls DOI: 10.1002/nme



6 T. HEYN, M. ANITESCU, A. TASORA, D. NEGRUT

The following quantities will be used in posing in more compact form the CCP of interest: nc is
the number of active contacts in the system; D ≡ [D1, · · · ,Dnc ] ∈ R6nb×3nc is the generalized
contact transformation matrix; Di ≡ [Di,n,Di,v,Di,w] ∈ R6nb×3 is the contact transformation
matrix associated with contact i ∈ A(q(l), δ); ri ≡ bi + DT

i M−1f ∈ R3 is the generalized contact
velocity for contact i; bi ≡

[
1
hΦi(q

(l)), 0, 0
]T ∈ R3 is the unilateral constraint stabilization term;

and N ≡ DTM−1D ∈ R3nc×3nc is the contact associated symmetric positive-semidefinite Schur
complement matrix, which is typically very sparse. The new quantities introduced – nc, D, Di, ri,
bi, and N – should be further qualified by a superscript (l) to indicate that they are evaluated in the
system configuration corresponding to tl. For brevity, the superscript was omitted.

One can show that the CCP of Eqs. (4), (7), and (9) represents the first-order optimality condition
of a constrained optimization problem with a quadratic cost function [25, 28]. This optimization
problem, which must be solved iteratively at each time step of the dynamic simulation, assumes the
form

min q(γ) =
1

2
γTNγ + rT γ (10)

subject to
√
γi,u2 + γi,w2 ≤ µiγi,n for i = 1, 2, . . . , nc .

Note that γ =
[
γT1 , γ

T
2 , . . . , γ

T
nc

]T
, where γi = [γi,n, γi,u, γi,w]

T is the triplet expressing the
magnitude of the contact impulses for contact i, i.e. γn = hγ̂i,n, γu = hγ̂i,u, γw = hγ̂i,w.

Equation (10) effectively casts the DVI problem into an equivalent optimization problem. Just
like any other solution method that relies on the DVI formulation (see, e.g., [29, 13, 30, 31, 32, 33]),
this approach lacks the uniqueness attribute for the numerical solution both in force and in
velocity distributions [15, 34, 35]. This issue can be traced back to the limitations associated
with the rigid body model.† For this numerical investigation, the rigid body model limitations and
ensuing lack of solution uniqueness will be controlled by comparing the methods analyzed here
for benchmark tests with zero friction. The velocity distribution is now unique [15, 18] despite
nonuniqueness of the force distribution, which can be traced back to the positive semi-definite
attribute of N. Consequently, when comparing different numerical methods (fixed-point iteration,
Krylov subspace, or spectral methods), the convergence of the algorithms will be judged based on
the value of the correction in velocities and not in γi,n, i = 1, 2, . . . , nc.

Note that when the mutual contact between bodies is characterized by µi = 0, the friction cones
degenerate into lines, and the CCP becomes a bound-constrained quadratic optimization problem,
where γ = [γ1,n, γ2,n, . . . , γnc,n]

T , N ∈ Rnc×nc , and r ∈ Rnc . In this case, γ represents the vector
of normal contact impulses. The problem in Eq. (10) assumes the form

min q(γ) =
1

2
γTNγ + rTγ (11)

subject to γi,n ≥ 0 for i = 1, 2, . . . , nc.

This problem is typically solved by a projected-Jacobi or Gauss-Seidel method [19, 28], which has
demonstrated poor convergence when the problem has bodies with vastly different inertia properties
and/or when the problem size gets large (on the order of 1 million bodies). With the advent of high-
speed parallel computing, this latter scenario is becoming more and more common [2].

4. SUMMARY OF ALGORITHMS CONSIDERED

Three algorithms are considered herein as candidates for solving the large scale CCP associated with
many-body dynamics problems: the gradient projected minimum residual (GPMINRES) method,
the preconditioned spectral projected gradient with fallback (P-SPG-FB) method, and the Kuc̆era

†One simple illustration is the case of a perfectly rigid four-legged stool that is symmetric; it immediately leads to
nonuniqueness in relation to the reaction force distribution in the four legs.
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KRYLOV SUBSPACE AND SPECTRAL METHODS FOR COMPLEMENTARITY PROBLEMS 7

method. The reference method is the Jacobi method currently implemented in the Chrono::Engine
simulation package [36].

Jacobi

The algorithm currently used by the Chrono::Engine software [36] to solve the constrained quadratic
optimization problem is based on the projected Jacobi method. Specifically, Chrono::Engine
employs the following iterative scheme, where the superscript represents the iteration number:

γ̃r+1 = γr + ωB[Nγr + r] (12)
γ̂r+1 = ΠK(γ̃r+1)

γr+1 = λγ̂r+1 + (1− λ)γr .

Here, ΠK(γ̃) represents a projection operator. In the frictionless case, the projection is onto the
non-negative numbers as seen in Eq. (11). For the frictionless case, the matrix B is defined as

B =

 η1 0
. . .

0 ηnc

 ,

where

ηi =
1

Trace(DT
i M−1Di)

.

In terms of the other parameters, ω is chosen between 0 and 1, and typically for large problems
ω ≈ 0.3. Note that when ω = 1 and no friction is present in the problem, the iteration for γ̃r+1 is
exactly the Jacobi iteration. Also, λ, which represents a “damping” parameter, is typically 1.

Gradient Projected Minimum Residual

For the optimization problem defined in Eq. (11), the Karush-Kuhn-Tucker (KKT) first-order
optimality conditions require that the projected gradient be zero:

∇Ωq(γ
(opt)) = 0nc , (13)

where

[∇Ωq(γ)]i ≡


∂q
∂γi

(γ) if γi > 0

min{0, ∂q∂γi (γ)} if γi = 0
. (14)

This algorithm, which uses the concept of projected gradient, draws on ideas presented in [37, 38]
and seeks a solution by alternating two techniques: steepest descent and a Krylov subspace method.
For the former, successive reductions of the cost function are accomplished by descending along
the gradient. Based on a decision correlated to (i) the rate at which the cost function is reduced and
(ii) the frequency at which the active set is changed, the projected gradient search is periodically
replaced by a more aggressive search that draws on a Krylov subspace algorithm.

The projected gradient component at a step k starts by setting y(0) = γ(k). A refined value y(j+1)

is obtained by a projected descent step:

y(j+1) = ΠK(y(j) − αj∇q(y(j))) , (15)

where ΠK(y)i ≡ max(0, yi). The value αj is selected so that

q(y(j+1)) ≤ q(y(j)) + µ〈∇q(y(j)),ΠK(y(j) − αj∇q(y(j)))− q(y(j))〉 , (16)

where µ ∈ (0, 1
2 ). More specifically, an optimal value α? is chosen to minimize the quadratic

function α→ y(j) − α∇q(y(j)) : α > 0. Then, αj is computed by using the smallest l for which

Copyright c© 2012 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Engng (2012)
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8 T. HEYN, M. ANITESCU, A. TASORA, D. NEGRUT

Eq. (16) holds with αj = α? ·
(

1
2

)l
, l = 0, 1, . . .. This projected gradient technique is applied until

one of the following two conditions is satisfied:

A(y(j+1)) = A(y(j)) (17)
q(y(j))− q(y(j+1)) ≤ η1 max{q(y(l−1))− q(y(l)) : 1 ≤ l < j} . (18)

The first condition ensures that the projected gradient technique is abandoned when it slows in
relation to changing the active set A(y(j)). A similar strategy is pursued when the reduction in
the cost function becomes sluggish. In Eq. (18) sluggishness is measured by the cost function
reduction from iteration to iteration, for some tolerance η1 > 0. If either condition is satisfied,
the solution method switches to a Krylov subspace technique. To this end, we set γ(k) ≡ y(j+1)

and search for d̄ ∈ Rnc : d̄i = 0, i ∈ A(γ(k)) that minimizes the cost function q(γ(k) + d). This
can be turned into an unconstrained optimization problem. To this end, we first define a matrix
Zk ∈ Rnc×mk , where mk is the number of free variables in γ(k) (i.e., variables γl : l ∈ F(γ(k)) ≡
{i : γ

(k)
i > 0}). Specifically, Zk is defined by mk columns of the identity matrix of dimension

nc associated with the set of free variables in γ(k). Minimizing q(γ(k) + d) with respect to d is
equivalent to minimizing q(γ(k) + d)− q(γ(k)). Defining Ak ≡ ZTkNZk, rk ≡ Zk∇q(γ(k)), and
qk(w) = 1

2wTAkw + wT rk, we compute dk as the solution of an unconstrained optimization
problem:

dk = Zkw̄k : w̄k = argmin qk(w) . (19)

In [37], finding w̄k relies on the conjugate gradient method. In fact, at step k of the algorithm, only
several conjugate gradient iterations are carried out that stop short of finding the actual value w̄k.
The iterative process continues as long as the cost function reduction is vigorous, that is,

qk(w(j−1))− qk(w(j)) ≤ η2 max{qk(w(lr−1))− qk(w(l)), 1 ≤ l < j} , (20)

for some constant η2 > 0.
When the matrix in the cost function in Eq. (11) is positive definite, Burke and Moré proved that

the algorithm above (i.e., the gradient projection combined with the conjugate gradient) has finite
termination and converges to the unique solution of the problem [39]. For multibody dynamics
problems the matrix N is positive semidefinite, leading to a convex problem that has multiple
solutions. Consequently, the method proposed here no longer seeks a unique solution, and a
decision was made to replace the conjugate gradient-based approach with a minimal residual Krylov
subspace method. When the solution is unique, by virtue of the fact that a minimization of the
error is producing the same solution as the minimization of the residual, the proposed algorithm
called GPMINRES is conjectured to produce the unique solution in a finite number of steps. Thus,
instead of using the conjugate gradient to solve the problem in Eq. (19), the approach adopted here
minimizes the residual of ∇qk(w) = 0mk

using MINRES [40].
The general algorithmic flow proceeds as follows:

ALGORITHM GPMINRES(N, r, τ , η1, η2, Nmax, Mmax)
(1) γ(0) := 0nc
(2) for k := 0 to Nmax
(3) y(0) = γ(k)

(4) while conditions in Eqs. (17) and (18) not violated
(5) y(j+1) = ΠK(y(j) − αj∇q(y(j))), see Eq. (15)
(6) j = j + 1
(7) endwhile
(8) γ(k) := y(j)

(9) Determine active set A(γ(k)) and Zk and rk that go with the free set
(10) w0 = 0mk

(11) for j := 0 to Mmax

(12) Improve value of w(j) → w(j+1) by taking one MINRES step
(13) j = j + 1

Copyright c© 2012 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Engng (2012)
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KRYLOV SUBSPACE AND SPECTRAL METHODS FOR COMPLEMENTARITY PROBLEMS 9

(14) if condition in Eq. (20) violated
(15) break
(16) enfor
(17) Set w̄k := w(j)

(18) Use backtracking line-search with direction dk = Zkw̄k to compute
γ(k+1)

(19) if ||∇Ωq(γ
(k+1))||∞ < τ (see Eq. (13))

(20) break
(21) enfor
(22) return Value at time step tl+1, γl+1 := γ(k+1) .

A more detailed version of this algorithm is provided in [20]. As discussed there, leaving the
Krylov phase is not always done as indicated in Line (15) of the algorithm. This exit strategy is
observed as long as the sets of active variables A(γ(k)) and binding variables B(γ(k)) = {i : γi =
0 and ∂q

∂γi
(γ(k)) ≥ 0} are different. Since the KKT conditions require that A(γ(k)) = B(γ(k)) at

a solution [38], the Krylov subspace method is not abandoned even if the condition in Eq. (20) is
violated as soon as the sets of active and binding variables are the same. Under these circumstances,
the value of η2 is reduced, and the Krylov subspace phase of the solution at iteration k is resumed
right after Line (10). Note that the backtracking at Line (18) is done in order to get a valid γ(k+1).
Specifically, starting with α = 1, the sequence γ(k+1) ← ΠK(γ(k) + αdk); α← α/2, is carried out
until q(xk+1) ≤ q(xk) + µ〈∇q(xk),xk+1 − γk〉.

This work also investigated the use of preconditioning in the GPMINRES method to further
increase solution speed. The resulting preconditioned algorithm, called GPMINRES-P, used
a perturbed LU factorization when solving the subproblem, Akw = −rk, with MINRES. In
particular, each time the subproblem was solved the matrix Ak was factored as Ak = LU. To this
end, the selected algorithm did not use pivoting. If a zero-entry was encountered on the diagonal
during computation, it was perturbed to the local drop tolerance, and elimination continued as
usual until the factors LU were completed. Therefore, the resulting factors satisfy Ak ≈ LU. The
implementation used MATLAB’s ilu function, with arguments to force full factorization with no
pivoting and perturbation of zero diagonal entries. This approach was selected because it could map
well to parallel computation in future implementations, an important feature when dealing with
many-body dynamics problems.

Preconditioned Spectral Projected Gradients with Fallback

The spectral projected gradient (SPG) method can be traced back to research on spectral-gradient
(SG) methods [41], which were initially considered for unconstrained QPs. A generic proof of
convergence was presented in [42]. Initially, the SG method was limited to the solution of linear
problems such as those arising from unconstrained QPs, but its performance could not outperform
the classic conjugate gradient method, which remained the de facto solver for that class of problems.
Interest in the method was revived when a globalization strategy was added that enabled it to
solve generic nonlinear optimization problems [43]. A further remarkable advancement was the
projected version of the SG method, which is the SPG presented in [44]. The SPG method is able to
solve convex-constrained optimization problems by performing a gradient projection at each step of
the iteration. Since the method is nonmonotone, a line search with the Grippo-Lampariello-Lucidi
(GLL) strategy has been suggested in [45].

ALGORITHM P-SPG-FB(N, r, γ(0), K, P 7→ γ)
(1) γ(0) := ΠK(γ(0)), γFB = γ(0), ᾰ(0) ∈ [αmin, αmax], ξ ∈ [0, 1]

(2) g(0) := Nγ(0) + r, f(γ(0)) = 1
2γ

(0)TNγ(0) + γ(0)T r, w(0) = 1029

(3) for j := 0 to Nmax
(4) p(j) = P−1g(j)

(5) d(j) = ΠK(γ(j) − ᾰ(j)p(j))− γ(j)

(6) if
〈
d(j),g(j)

〉
≥ 0
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(7) d(j) = ΠK(γ(j) − ᾰ(j)g(j))− γ(j)

(8) λ := 1
(9) while line search
(10) γ(j+1) := γ(j) + λd(j)

(11) g(j+1) := Nγ(j+1) + r

(12) f(γ(j+1)) = 1
2γ

(j+1)TNγ(j+1) + γ(j+1)T r

(13) if f(γ(j+1)) > max
i=0,..,min(j,NGLL)

f(γ(j−i)) + ξλ
〈
d(j),g(j)

〉
(14) define λnew ∈ [σminλ, σmaxλ] and repeat line search
(15) else
(16) terminate line search
(17) s(j) = γ(j+1) − γ(j)

(18) y(j) = g(j+1) − g(j)

(19) if j is odd

(20) ᾰ(j+1) =
〈s(j),Ps(j)〉
〈s(j),y(j)〉

(21) else
(22) ᾰ(j+1) =

〈s(j),y(j)〉
〈y(j),P−1y(j)〉

(23) ᾰ(j+1) = min(αmax,max(αmin, ᾰ
(j+1)))

(24) w(j+1) =
∣∣∣∣[γ(j+1) −ΠK(γ(j+1) − τgg(j+1))

]
/τg
∣∣∣∣

2
= ||ε||2

(25) if w(j+1) ≤ min
k=0,..,j

w(k)

(26) γFB = γ(j+1)

(27) return γFB

This algorithm inherits the properties of the SPG method presented in [44] and adds
preconditioning and a safe fallback strategy, hence the name P-SPG-FB. The method requires the
following parameters: two safeguards αmin and αmax for the spectral step length (respectively 10−9

and 109 in our tests), two safeguards for the line search 0 < σmin < σmax < 1, an integer NGLL to
accommodate nonmonotone steps within the GLL line search (a value about 10 works well in most
cases), the Armijo sufficient decrease parameter ξ ∈ [0, 1], usually very low, and a small value τg
for the fallback strategy.

Our implementation of preconditioning for the P-SPG-FB method is inspired by the scheme
introduced in [46]; early preconditioning ideas for SG methods in general are discussed in [47].
We recall that the goal of preconditioning is to cluster the eigenvectors of the N matrix, trying to
reduce its condition number κ(N) by solving an equivalent problem with unknowns γ̆. By adopting
a left-right symmetry-preserving preconditioning [40], we define

N̆ = L−1NL−T , r̆ = L−1r, γ̆ = LT γ . (21)

One can rewrite the original SG method using N̆, r̆, and γ̆, substituting terms in Eq. (21) and
showing that there is no need of using the L matrix explicitly: a more efficient version uses only
the P = LLT matrix and operates directly on the original γ unknowns. Differently from [47],
we alternate two formulas for the computation of the spectral step size, as suggested in [48]:
αBB1 = 〈s, s〉 / 〈s,y〉 and αBB2 = 〈s,y〉 / 〈y,y〉. In the preconditioned case,

ᾰBB1 =
〈s̆, s̆〉
〈s̆, y̆〉

=
sTLLT s

sTLL−1y
=

sTPs

sTy
(22)

ᾰBB2 =
〈s̆, y̆〉
〈y̆, y̆〉

=
(LT s)T(L−1y)

(L−1y)T(L−1y)
=

sTy

yTP−1y
. (23)

We noticed that alternating ᾰBB1 and ᾰBB2 gives about the same rate of convergence of ᾰBB1 alone,
or even less; however, the alternating scheme usually produces a smoother nonmonotone descent,
thus allowing a more frequent update of the fallback vector γFB .
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The continuous nonexpansive projection operator Π(·) is a mapping that satisfies Π(γ)K =
arg min

z∈K
||z− γ||. In case of frictional contact simulations, this is a projection onto the simple second-

order Lorentz cones. The computational overhead is linear with the number of contacts and thus
almost negligible. For the preconditioned iteration, one could operate Π(γ̆)K̆ or use the approach of
[46] that projects γ on the original set K; the latter option is easy to implement, but in some cases
it might violate the Wolfe condition on the descent direction [49]. In [46] this is fixed by switching
to a nonpreconditioned gradient if the Wolfe condition fails, and by turning on the preconditioner
mostly during the last iterations. To avoid these problems, we use a custom diagonal preconditioner
P = diag(A), where the diagonal elements relative to the same subset are averaged. In practical
terms, for a problem with nc frictional contacts, nc triplets on the diagonal are averaged and inserted
on the diagonal of P. This P = diag(A) preconditioner is simple and can be implemented easily,
without major impact on the computational times. Despite its simplicity, this type of preconditioner
was able to improve the convergence of the P-SPG-FB method in various benchmarks, especially
those that involved many light objects mixed with few heavy objects, stacked on flat surfaces.
In other, less frequent cases, this preconditioner gave no major benefits or even produced worse
convergence.

An important issue is that a fallback strategy is needed because the method is nonmonotone:
in all SG methods the residual runs through various unpredictable peaks before converging to the
stationary point. This is not a problem if one runs the iterations up to the exact solution; however, if
one wishes to truncate prematurely the iteration because of real-time requirements, for instance as
in vehicle simulators or video gaming, the last computed value γ(j) might not be the best choice. In
case of an unconstrained QP, it is sufficient to resort to a past γ(j) whose f(γ) was minimum, but
for the generic case of convex constraints, this is not true because a vector might give very low f(γ)
with γ ∈ K and yet violate significantly the first order optimality condition. A better indicator comes
from the fact that when approaching a stationary point

∣∣∣∣γ(j+1) −Π(γ(j+1) − g(j+1))
∣∣∣∣

2
becomes

very small. In the algorithm we use a similar criterion, but we scale the gradient by τg and we
postscale its projection by τg because it gives more reliable results when γ is still far from the
stationary point:

||ε||2 ≡
∣∣∣∣∣∣[γ(j+1) −ΠK(γ(j+1) − τgg(j+1))

]
/τg

∣∣∣∣∣∣
2

. (24)

The Kuc̆era Method

This algorithm draws on an approach for minimizing quadratic cost functions with separable convex
constraints [50]. While the more general algorithm handles any separable convex constraints,
the algorithm outlined here handles the case of Eq. (11) where all variables are subject to non-
negativity constraints. We rely on the same condition for optimality stated in Eq. (13). An alternative
definition of the projected gradient, g̃ = g̃(γ(k)), is used, where once again ΠK(y)i ≡ max(0, yi),
and 0 < α̃ ≤ ‖N‖−1 is a constant step-size, usually taken as α̃ = ‖N‖−1.

g̃(γ(k)) =
1

α̃
(γ(k) −ΠK(γ(k) − α̃g(γ(k)))) (25)

The projected gradient g̃ = g̃(γ(k)) can be decomposed into the projected free gradient φ̃ =
φ̃(γ(k)) and the projected boundary gradient β̃ = β̃(γ(k)). Note that the subscript i indicates the
ith component of a vector.

φ̃i = g̃i for i ∈ F(γ(k)), φ̃i = 0 for i ∈ A(γ(k)) (26)
β̃i = 0 for i ∈ F(γ(k)), β̃i = g̃i for i ∈ A(γ(k)) (27)

The gradient g = ∇q(γ(k)) can be similarly decomposed. The free gradient φ = φ(γ(k)) will be
used in the remainder of the algorithm. Its ith component is defined as

φi = gi for i ∈ F(γ(k)), φi = 0 for i ∈ A(γ(k)) (28)
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In general, the algorithm chooses one of three steps for each iteration. These steps are the
expansion step, which may add indices to the active set; the proportioning step, which may release
indices from the active set; and the conjugate gradient step, which minimizes the objective function
value given the current active set. If β̃(γ(k))Tg(γ(k)) ≤ Γ2φ̃(γ(k))Tg(γ(k)), then γ(k) is called
strictly proportional, and γ(k+1) is generated by a conjugate gradient step if doing so maintains
γ(k+1) ∈ Ω, or by the expansion step if the conjugate gradient step would end up outside the feasible
region. If γ(k) is not strictly proportional, γ(k+1) is generated by the proportioning step. Here, Γ is
a constant that controls how willing the method is to release indices from the active set. Good
performance has been achieved with Γ = 1.

Once again, the conjugate gradient steps minimize the objective funtion for a given active set.
For this situation to occur, a step in a conjugate gradient direction p(k) should not alter the active
set. In other words, we require p

(k)
i = 0 for i ∈ A(γ(k)). To this end, we start an unbroken chain of

conjugate gradient iterations with p(s) = φ(γ(s)) and use the following:

p(k) = φ(γ(k))− ρ(k)p(k−1), ρ(k) =
φ(γ(k))TNp(k−1)

(p(k−1))TNp(k−1)
, k > s . (29)

Note that if the active set changes, the conjugate gradient direction must be restarted. With these
preliminaries, the algorithm, which was proved in [50] to have a linear convergence rate in terms of
the spectral condition number of the matrix N, proceeds as follows:

ALGORITHM KUCERA(N, r, γ(0), Γ > 0, α̃ ∈ (0, ‖N‖−1], ε > 0)
(1) k = 0
(2) g = Nγ(0) + r
(3) p = φ(γ(0))
(4) while ‖g̃(γ(k))‖ > ε
(5) if β̃(γ(k))Tg(γ(k)) ≤ Γ2φ̃(γ(k))Tg(γ(k))
(6) αcg = gTp/pTNp

(7) αf = min(αf,i) where αf,i =

{
γ

(k)
i /pi, if pi > 0

∞, if pi ≤ 0

(8) if αcg < αf
(9) γ(k+1) = γ(k) − αcgp
(10) g = g − αcgNp
(11) ρ = φ(γ(k+1))TNp/pTNp
(12) p = φ(γ(k+1))− ρp
(13) else
(14) γ(k+1/2) = γ(k) − αfp
(15) γ(k+1) = γ(k+1/2) − α̃φ̃(γ(k+1/2))
(16) g = Nγ(k+1) + r
(17) p = φ(γ(k+1))
(18) else
(19) γ(k+1) = γ(k) − α̃β̃(γ(k))
(20) g = Nγ(k+1) + r
(21) p = φ(γ(k+1))
(22) k = k + 1
(23) return γ(k)

5. PERFORMANCE INVESTIGATION

The purpose of this section is to compare the iterative methods discussed for solving the quadratic
optimization problem associated with the frictionless contact problem (see Eq. (11)). The data for
all tests in this section was generated in Chrono::Engine [36]. All numerical experiments include
a projected variant of the Jacobi solver as the reference solver. The “reference solver” choice is
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Table I. Performance of iterative methods on Test Problem 1, a system with 1,000 bodies that led to a cost
function in 3,525 variables. Notation used: FOFV - final objective function value; N ⊃M in the second
column stands for “N MinRes iterations within M changes of active set”. Reported solution time (Sol.

Time) is in seconds.

Method Iterations FOFV γmin γmax
Sol. Time

(sec.)
GPMINRES 1000 ⊃ 100 -2.9035 0.0 7.7487 6.70
GPMINRES 10000 ⊃ 1000 -2.9045 0.0 8.2002 61.07

GPMINRES-P 100 ⊃ 100 -2.8854 0.0 6.8551 1675
Jacobi 1000 -2.5077 0.0 4.4961 3.66
Jacobi 10000 -2.8983 0.0 7.4953 24.66
Jacobi 43000 -2.9035 0.0 7.9254 95.41
Jacobi 100000 -2.9043 0.0 8.0619 231.7

motivated by the observation that the Jacobi solver, unlike the marginally more efficient Gauss-
Seidel approach, is more amenable to parallel computing; see, for instance, [51, 52, 53, 2]. For each
test, a Chrono::Engine simulation was run in which a collection of spheres was allowed to settle
within a fixed boundary. After the spheres had nearly settled, the simulation was frozen so that
the optimization problem associated with the current time step could be extracted. The quadratic
optimization problem solved is completely specified by the matrix N and the vector r; see Eq. (11).
For comparison, the Jacobi, GPMINRES, SPG-FB, and Kuc̆era methods were all implemented in
MATLAB.

Test Problem 1

Figure 3. Test Problem 1, containing 1,000 bodies.

Test Problem 1 represented a system with 1,000 bodies and 3,525 contacts. The state of the system
can be seen in Fig. 3. The problem was solved with GPMINRES with and without preconditioning
(GPMINRES-P and GPMINRES, respectively) and Jacobi methods. Figure 4 shows the objective
function value plotted versus the iteration number. Each dot in the figure represents an active set, or
a certain subproblem. Note that for GPMINRES, 10 MINRES iterations were performed for each
subproblem. With GPMINRES-P, the preconditioning allowed the subproblem to be solved more
accurately in one iteration for each subproblem. The data plotted in Fig. 4 corresponds to the data
in Table I. Specifically, the data from rows 2, 3, and 5 are plotted. However, note that the data in
row 1, for example, simply comes from stopping the iterative process after 1,000 iterations, whereas
the data in row 2 would be reached by performing 9,000 further iterations to reach 10,000 total
MINRES iterations.
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Figure 4. Objective function value of various iterative methods for Test Problem 1 (1,000 bodies/3,525
contacts)

Figure 5. Comparison of solution vector γ for Test Problem 1 (1,000 bodies/3,525 contacts). Here, the
solution vector is sorted by magnitude for several methods and different numbers of iterations, corresponding

to Table I. Each point is the magnitude of one γi.

The performance of the iterative methods on Test Problem 1 is summarized in Table I. Note
that preconditioning is expensive in this implementation. Additionally, preconditioning does not
significantly improve the solution. In fact, the solution achieved without preconditioning after 1,000
total MINRES iterations (within 100 changes of the active set) was both more accurate and faster
than that achieved with preconditioning after 100 total MINRES iterations (within 100 changes
of the active set). Also, note that GPMINRES achieved the same objective function value after
1,000 iterations as Jacobi did after 43,000 iterations, and did so over 14 times faster in terms of
computation speed. One also can observe in Fig. 5 that the solution vector becomes “sharper” as
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more iterations are performed, that is, as the solution converges, the maximum magnitude of the
normal contact impulses in the system increases toward the correct value.

5.1. Test Problem 2

Test Problem 2 was used to gauge the performance of the algorithms as the problem size increased.
Each test in this set consisted of a cylindrical boundary with radius 2 m and a collection of spherical
bodies of radius 0.1 m and mass 6.28 kg. The three tests had 1,000, 2,000, and 4,000 bodies, with
3,634, 8,507, and 17,161 contacts, respectively. For each test all four algorithms were tested with
initial guess x0 = 0 for an equal number of iterations. For each test, the objective function value
and the residual ||ε||2 (evaluated as indicated in Eq. (24)) are plotted.

Figure 6. Results for System 1 of Test Problem 2 with nc = 3634: Objective function value shifted by a
constant and plotted on log axes; Residual ||ε||2 (evaluated as indicated in Eq. (24)).

Figure 7. Results for System 2 of Test Problem 2 with nc = 8507: Objective function value shifted by a
constant and plotted on log axes; Residual ||ε||2 (evaluated as indicated in Eq. (24)).
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Figure 8. Results for System 3 of Test Problem 2 with nc = 17161: Objective function value shifted by a
constant and plotted on log axes; Residual ||ε||2 (evaluated as indicated in Eq. (24)).

The results, plotted in Figs. 6-8, indicate that the SPG-FB, GPMINRES, and Kuc̆era algorithms all
perform significantly better than Jacobi for all systems in Test Problem 2 in terms of both objective
function and residual value. Among these three algorithms, SPG-FB performs best at the beginning
of the iterative process, but its performance degrades more quickly than that of GPMINRES. This
result can be observed in the residual plots for all systems in this test set. We note that Jacobi and
SPG-FB are monotone in terms of both the objective function and the residual. This property is
advantageous when one may need to terminate the iterative process at an arbitrary point.

A measure of feasibility at the end of the iterative process is plotted in Fig. 9 for System 1 of
Test Problem 2. This figure shows, for each method considered, the mean, standard deviation, and
maximum feasibility defined as fi = γ(Nγi + r)i. Note that f should be identically zero if the
complementarity problem is exactly satisfied.

Figure 9. Feasibility at end of iterative processfor System 1 of Test Problem 2, where fi = γ(Nγ + r)i.
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Figure 10. Size of the active set at each iteration for Test Problem 2 with nc = 3634, nc = 8507, and
nc = 17161.

The active set methods GPMINRES and Kuc̆era can be compared by the size of the active set
at each iteration. Note that we consider only the size of the active set here and not the actual
contents. This data for the three systems of Test Problem 2 can be seen in Fig. 10. Note that Kuc̆era
experiences larger changes in the active set than does GPMINRES during the solution process.
Additionally, GPMINRES seems to settle on an active set more quickly than Kuc̆era. Note that the
size of the active set can be unsettled even as the objective function approaches the minimum. This
phenomenon is best observed in the results from the larger systems of this test problem. In fact, even
if the size of the active set is constant, the contents of the active set can still be unsettled because of
the redundancy of the contacts in the physical system. This also indicates that the stopping criteria
for the iterative process should not be based on the active set, but rather on a measure of the change
in velocity from the previous iteration or on a measure of the projected gradient. Recall that the
velocity solution is unique, while the contact impulse solution, γ, is not.

5.2. Test Problem 3

Test Problem 3 was used to gauge the performance of the algorithms in a scenario where a heavy
object was supported by relatively light and small spherical bodies, a situation encountered when
simulating a tracked or wheel vehicle moving over granular terrain, see Fig. 1(a) [5]. Here, a
cylindrical boundary with radius 1.5 m was filled with 1,000 spherical particles with radius 0.1
m and mass 6.28 kg. A cylindrical mass of radius 1.125 m was dropped on top of the bodies (see
Fig. 11). Each system in this test set represents the same scenario, with the mass of the cylinder
body increasing. The three systems set the mass of the cylinder to 1000 kg, 4000 kg, and 16000 kg
respectively. This scenario had 4,295 contacts.

For this test a normalized objective function value was used in postprocessing. For each mass
of the heavy cylinder; i.e., for each of the three systems, a scaling factor was found such that the
minimum achieved objective function among all algorithms was −1. A different scaling factor was
necessary for each mass test. This normalization allows comparisons between algorithms for a given
mass test and between mass tests. The results can be seen in Fig. 12. Here, comparisons for a
given mass test can be made by considering lines of the same color, while comparisons for a given
algorithm with increasing applied mass can be made by considering lines of the same style. Once
again, GPMINRES performs best for all three scenarios. Further, the performance degradation with
increasing mass is less significant for GPMINRES than for other algorithms.
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Figure 11. System for Test Problem 3 with 1,001 bodies and nc = 4295. The mass of the cylindrical body
was set to 1000 kg, 4000 kg, and 16000 kg for the three tests in this set.

Figure 12. Normalized objective function values for Test Problem 3 (nc = 4295), with 1000, 4000, or 16000
kg mass supported by spherical bodies. Normalization is performed per mass test.

The residual value ||ε||2 is plotted for each mass test in Fig. 13.

6. CONCLUSIONS AND FUTURE WORK

This paper describes a performance analysis of several iterative methods for solving many-
body dynamics problems formulated as complementarity problems. Using this formulation results
in a constrained quadratic optimization problem that must be solved iteratively at each time
step. Specifically, three new methods for solving this problem are described and compared with
the commonly used Jacobi method through several numerical experiments. The results show
several important aspects of the numerical solution. First, the ubiquitous Jacobi and Gauss-Seidel
algorithms used in the contact dynamics community converge very slowly; see also [20]. Second,
the scalability of Jacobi when applied to larger problems appears to be much worse than that
of GPMINRES, SPG-FB, and Kuc̆era, the three new algorithms investigated here. We note that
one iteration of GPMINRES is more computationally expensive than one Jacobi sweep, yet, as
illustrated by results in Table I, the former still is faster for large systems given the lower number
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Figure 13. Residual values for Test Problem 3 (nc = 4295), with 1000 kg, 4000 kg, or 16000 kg mass
supported by spherical bodies.

of iterations required to achieve the same level of accuracy. Furthermore, preconditioning does not
seem to provide a net benefit in the GPMINRES method. Using preconditioning in the solution
of the subproblem allowed for fewer MINRES iterations to be used, but the computation of the
preconditioning factors was prohibitively expensive and provided no significant benefit.

GPMINRES, SPG-FB, and Kuc̆era have shown good performance for frictionless problems and
can be mapped to leverage the parallel computing power of commodity graphics processing unit
cards, as has already been done for the Jacobi method. Ongoing work will develop and test similar
methods for use on problems with friction. Specifically, the cylindrical constraints associated with
the Tresca friction model will be used in a fixed point iteration to lead to the conic constraints
associated with the Coulomb friction model [54].
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